Single Pure - Integration Definite

1. Evaluate the following integrals, showing full working and simplifying your answer as much as possible:

(a) $\int_{-3}^{3} x^2 + 3x - 1 dx.$	$\frac{52}{3}$
(b) $\int_{-1}^{2} \frac{1}{x^2} dx.$	12
(c) $\int_{1}^{k} \sqrt{x} dx.$	$\frac{2k^{3/2}}{3}$
(d) $\int_{0}^{9} \frac{1}{\sqrt{x}} dx.$	6
(e) $\int_{0}^{27} \sqrt[3]{x} dx.$	$\frac{195}{4}$
(f) $\int_{1}^{2} x^4 - \frac{3}{x^2} + 1 dx.$	$\frac{57}{10}$
(g) $\int_{1}^{3} \frac{x^3 + x - 2}{r^5} dx.$	$\frac{40}{81}$
(h) $\int_0^{\pi} \sin x dx.$	2
(i) $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cos 2x dx.$	$\frac{2-\sqrt{3}}{4}$
(j) $\int_{-1}^{0} e^{2x} dx.$	$\frac{1}{2} - \frac{1}{2e^2}$
(k) $\int_{-1}^{2} (2x-3)^5 dx$. (Don't multiply o	ut!)
(1) $\int_{-2}^{0} \frac{x}{\sqrt{x^2+1}} dx.$	$1 - \sqrt{5}$
 Find the value of k that satisfies the follo 	wing integral equations:
(a) $\int_{0}^{3} kx^2 dx = 45.$	<i>k</i> = 5
(b) $\int_{-2}^{-1} kx^4 dx = 62.$	k = 10
(c) $\int_{0}^{\frac{\pi}{2}} k \cos x dx = 5.$	<i>k</i> = 5
(d) $\int_{-2}^{1} kx^3 dx = 1.$	$k = -\frac{4}{15}$
(e) $\int_0^1 k e^{3x} dx = 1.$	$k = \frac{3}{e^3 - 1}$

3. Find the value(s) of a that satisfies the following integral equations:

(a)
$$\int_0^a x + 3 \, dx = 20.$$

 $a = 4 \, \text{or} \, a = -10$

www.MathsHelper.co.uk

(b)
$$\int_0^a x^3 dx = 4.$$
 $a = \pm 2$

(c)
$$\int_0^a e^x \, dx = 1.$$

(d)
$$\int_0^a \sqrt{x} \, dx = \frac{3}{2}.$$
 $a = \frac{27}{8}$

4. Sketch the graph of $y = 4x^2 - 9$, and find the area bounded by this curve and the *x*-axis.

- 5. (a) Sketch the curve $y = x^2 3x$.
 - (b) Shade the two regions bounded by the curve and the *x*-axis, and the lines x = 0 and x = 5.
 - (c) Explain why $\int_0^5 x^2 3x \, dx$ does not give the total area of the shaded regions.
 - (d) Use integration to find the exact total area of the shaded regions.
- 6. (a) Sketch (on the same set of axes) the graphs of $y = x^2 + 3x 10$ and $y = -3x^2 9x + 30$. Find the area bounded by this curve and the *x*-axis. Show all points of intersections with the coordinate axes.
 - (b) By evaluating two separate integrals, find the exact area contained between the curves.

 $228\frac{2}{3}$

4

 $\frac{35}{3}$

Some area below axis and some above.

Some area below axis and some above.

- 7. (a) Sketch the curve $y = \sin x$, where x is measured in radians, for $0 \le x \le 2\pi$.
 - (b) Explain why $\int_0^{2\pi}$ does not find the two areas between the curve and the *x*-axis.
 - (c) Find the sum of the two areas.
- 8. Find the areas bounded by $y = 4(x^2 4)(3 x)$ and the *x*-axis (i) for which y > 0; (ii) for which y < 0. Write down the value of

$$\int_{-2}^{3} 4(x^2 - 4)(3 - x) \, dx.$$

- 9. Evaluate $\int_{1}^{3} (4 + 3x x^3) dx$. What can you deduce from your results about the graph of $y = 4 + 3x x^3$ between x = 1 and x = 3?
- 10. Evaluate $\int_0^2 (x^2 + 1) dx$. Explain, with the aid of a sketch, how you could deduce the value of

$$\int_{-2}^{2} (x^2 + 1) \, dx.$$

Show, preferably by means of another sketch, that

$$\int_{-2}^{2} x(x^2 + 1) \, dx.$$

11. Sketch the curve y = x(x - 2). Find an expression for

$$F(t) \equiv \int_{-1}^{t} x(x-2) \, dx$$

www.MathsHelper.co.uk

and sketch the curve y = F(t) for $-1 \le x \le 3$.

Find the maximum and minimum values of F(t), and the values of t for which these occur. How do these relate to the first graph?

12. (a) Use the result

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a),$$

where $F'(x) \equiv f(x)$, to show that

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

and interpret this in terms of areas when a < b < c.

(b) Show that putting a = b in (a) suggests that

$$\int_{a}^{a} f(x) \, dx = 0$$

and explain how this fits with the interpretation of a definite integral as an area.

(c) Show that putting c = a in (a) suggests that

$$\int_{b}^{a} f(x) \, dx = -\int_{a}^{b} f(x) \, dx.$$

[The results in (b) and (c) are used as the definitions of $\int_a^b f(x) dx$ when $a \ge b$.]

- 13. Calculate the coordinates of the points where the curve $y = x^2$ crosses the line y = 3x + 10 and show them in a sketch of a line and the curve. On your diagram shade the area which satisfies both $y \ge x^2$ and $y \le 3x + 10$. Calculate this area.
- 14. Sketch the curves $y = x^2$ and $y = 8 x^2$, and show that they intersect at the points (2, 4) and (-2, 4). Calculate the area enclosed by the two curves.
- 15. Find the area enclosed by the curves $y = x^2$ and $y = x^3$.
- 16. Sketch the curves

$$y = \frac{4}{x^2}$$
, $y = x(x + 3)$ and $y = x - \frac{x^2}{4}$.

for $0 \le x \le 2$. You *should* find they cross at (0,0), (1,4) and (2,1) and that the three curves enclose an area between these points. Find the enclosed area.

- 17. Show that if $n \ge 1$, the area enclosed by the curves $y = x^n$ and $y = x^{1/n}$ is $\frac{n-1}{n+1}$.
- 18. Sketch the curve $y = (x + 2)^2$, and shade the region defined by the inequalities $x \ge 0$, $y \ge (x + 2)^2$, $y \le 9$. Calculate the area of this region.
- 19. Draw a rough sketch of the curve $y^2 = 8x + 8$. Calculate the area enclosed by the curve and the line x = 1.